Christmas homework

Exercises:

1. A gambler plays the following game: she extract randomly a card from a deck of 40 cards (4 different seeds and 3 figures for each seed). She wins if she extract a hearts card or a ace. To play she has to pay $5 €$, and if she wins, she gains $30 €$.
(a) If she plays 10 times (reinserting the extracted card in the deck each time), which is the probability that she will win more than 3 times?
(b) Describe the random variable X that represent the total gain that the gambler can obtain (including the cost to play). Which is the mean and the variance of X ?
(c) Assume that she will play 1000 times, which is the probability that she will gain in total an amount between $500 €$ and $1200 €$?
2. Assume the random variable X follows the distribution:

$$
f_{X}(x)=3 e^{-3 x}, \quad x \geq 0
$$

Assume $Y=X^{3}$.
(a) Which is the density function of Y?
(b) Which is the covariance $\operatorname{cov}(\mathrm{X}, \mathrm{Y})$?
(c) Which is the expected value of X and the expected value of Y ? Do you notice any relation between them?
3. Consider the bivariate distribution

$$
f_{X, Y}(x, y)=k x\left(2-y^{2}\right)
$$

for $1<x<2$ and $x<y<2$
(a) Which value do you have to assign to k in order to have a density function?
(b) Which is the marginal density function of X ?
(c) Which is the marginal density function of Y ?
(d) Are the two marginals independent each other? Why?
4. Compute the following probabilities according to the definition of the random variable:
(a) $X \sim N(2,2), \quad P(X<2.22)$
(b) $X \sim N(-6,30), \quad P(-10<X<1)$

